AD

AD-E402 802

Technical Report ARWEC-TR-97002

REPLACEMENT OF FIRST FIRE COMPOSITION IN M127A1 GROUND ILLUMINATION SIGNAL

Russell N. Broad

December 1997

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

Warheads, Energetics & Combat-support Armaments Center

Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.

DTIC QUALITY INSTRUCTED 3

19980410 081

The views, opinions, and/or findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.

REPORT DO	CUMENT PAGE			Form Approved
Public reporting burden for this collection of data sources, gathering and maintaining the or any other aspect of this collection of infortion Operations and Reports, 12115 Jeffersc Reduction Project (0704-0188), Washington	data needed, and completing and re rmation, including suggestions for a on Davis Highway, Suite 1204, Arl	eviewing the collection of information. Freducing this burden, to Washington Ho	Send comments i eadquarters Serv	regarding this burden estimate ices, Directorate for Informa-
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE December 1997	3. REPORT TYPE AND DATES C	OVERED	
4. TITLE AND SUBTITLE REPLACEMENT OF FIRST ILLUMINATION SIGNAL		IN M127A1 GROUND	5. FUNDING I	NUMBERS
6. AUTHORS Russell N. Broad				
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMI REPORT N	NG ORGANIZATION UMBER
ARDEC, WECAC Energetics & Warheads Div Picatinny Arsenal, NJ 0780		E-F)		
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(F	ES)		ING/MONITORING REPORT NUMBER
ARDEC, WECAC Information Research Center Picatinny Arsenal, NJ 0780	•	")		nical Report EC-TR-97002
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIB	UTION CODE
Approved for public release	; distribution is unlimite	ed.		** *
13. ABSTRACT (Maximum 200 words)			-	
A study was conducted to The original first fire compositrate, a toxic material. Progretion as a replacement. A description as a replacement compositions. cally. Results from this test was loaded into complete significant ble Military specification required a currently used first fire contracts.	sition contained tetrani ram costs were minimi ata base of such comp The compositions wer showed that Starter M ignals that underwent i juirements. The succe	ized by choosing a prese positions was created. It was re loaded into illuminant a dix (SM) XXV was the best ballistic testing. Signals was the district testing.	ce materia ntly used f was used t assemblies at candidat with SM-XX	al, and barium ni- irst fire composi- o pick candidate s and tested stati- te composition. It XV met all applica-
14. SUBJECT TERMS First fire Igniter	Tetranitrocarbazole	e Colored signal	15. NUMBER	OF PAGES 22
Illuminating Candlepower		COOLEG SIGNAL	16. PRICE CO	DDE
17. SECURITY CLASSIFICATION 18. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITAT	ION OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

UNCLASSIFIED

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std Z39.18 298-02

UNCLASSIFIED

SAR

CONTENTS

		Page
Intro	oduction	1
Tec	hnical Approach	1
Res	ult	2
	Composition Data Base/Selection of Candidate Compositions Static Tests of Candidate Compositions Ballistic Testing for Prove Out of New First Fire Composition	2 2 3
Cor	clusions	3
Red	ommendations	4
Ref	erences	17
Dist	ribution List	19
	TABLES	
1	Formulations for pyrotechnic first fire compositions	5
2	Database for first fire and pyrotechnic compositions	6
3	Candidate first fire compositions	11
4	Static tunnel (ARDEC) data for various illuminant assemblies	12
5	Static tunnel (LHAAP) data for standard and candidate illuminant assemblies	13
6	Ballistic data for signals conditioned at -65°F	14
7	Ballistic data for signals conditioned at 70°F	15
8	Ballistic data for signals conditioned at 165°F	16

INTRODUCTION

The pyrotechnic first fire compositions covered by MIL-P-48240 are used on a wide range of colored signals and illuminating projectiles. There are three of these compositions, each formulated to give a distinctive color. Table 1 give the formulations for these compositions. TNC is a common constituent of these compositions. TNC was first synthesized in the late 1800s and found use in pyrotechnics in World War II (ref 1). Picatinny Arsenal investigated its use as a first fire constituent in the early 1950s (ref 2). It is considered an explosive material. Upon ignition it produces considerable energy and essentially gaseous products. These properties enable the first fire compositions to ignite illuminating and signal compositions. The first fire compositions are either pressed on top of, or brushed onto, the surfaces of illuminating and signal compositions pressed into canisters or sleeves. The first fire compositions are initiated by expelling charges or ignition compositions. Through the years, the first fire compositions have given reliable, consistent performance.

In the early 1990s, the availability of TNC became uncertain because its sole producer did not want to manufacture it anymore. Although another company picked up production, availability could not be guaranteed. TNC has no commercial market and the military market has declined dramatically. The resulting low demand make its production marginally profitable. Thus, there is little motivation to continue its production. This situation led to execution of an engineering study to eliminate use of TNC. A secondary purpose of the engineering study was the replacement of barium nitrate in the igniter compositions. This material is in two of the pyrotechnic first fire compositions. Like all water soluble barium salts, it has high acute toxicity. Further, disposal of waste containing it is relatively expensive because it cannot be landfilled. This report describes the results of the engineering study.

TECHNICAL APPROACH

One approach to remove TNC could have been reformulating the first fire compositions without it. This would have resulted in novel compositions. The approach taken, however, was replacement of the three first fire compositions with a pyrotechnic composition that was presently being used on other items. The advantages of this approach follow. First, it minimized testing required for qualification since a presently used composition had a history associated with it. This included functioning performance in various end items, environmental considerations, cost and data on storage stability, safety, thermodynamics, and kinetics. Second, manufacturing procedures and drawings already existed for the composition. Third, use of one first fire composition would simplify manufacturing since one batch of composition could be used for various items, regardless of the items' signal or illumination colors.

One possible drawback to this approach was the elimination of first fire compositions that were tailored to the illuminating or signal composition color. Several individuals knowledgeable in the field use the colored signals revealed that the color of the first fire flash was insignificant in affecting an observer's ability to distinguish illuminant or signal colors. The flash of the first fire is of very quick duration (<500 ms) compared to the burn time of the illuminants or signals (>25 sec). Thus, elimination of the color requirement for the first fire compositions was of no concern and this approach was pursued.

The program was conducted in three phases. First, other presently used pyrotechnic compositions were identified and pertinent data was collected on them. For maximum flexibility, we did not confine our search to only igniter and first fire compositions (henceforth we will use the term first fire to apply to igniter compositions as well). A data base was created from which the best candidate compositions were selected. Second, static functioning tests were performed on illuminant assemblies which contained the candidate first fire compositions and the standard first fire compositions. These tests determined if the candidate replacement compositions would have any adverse affect on the static requirements for the illuminating assemblies. Third, items were loaded with both the candidate replacement composition and the standard first fire composition, and underwent first article ballistic testing.

RESULT

Composition Data Base/Selection of Candidate Compositions

Identification of presently used first fire compositions was begun by generating a list of drawings that contained words igniter, ignition, and first fire in their titles. These drawings were then obtained. A second source for such compositions was reference 3. This procedure ensured that the vast majority of, if not all, presently used first fire compositions were identified. With this information, a minimal data base that included first fire formulations and common names was created. Further information was then added. This included impact, electrostatic and friction sensitivity data, hazard class, heat of reaction, autoignition temperature, burn rate, cost per pound, and qualitative ranking of toxicity. Not all of his data could be obtained for every composition. The data base is shown in table 2. The references for the various data are cited in the table.

Criteria were developed to select the most promising candidate replacement compositions. Criteria included toxicity, cost, sensitivity, availability of constituents, history of problems, and burning characteristics. It was decided to eliminate those that would be least likely selected. The first criterion for elimination was presence of acutely toxic or carcinogenic constituents. This included barium, lead salts, and chromates. This consideration eliminated many of the compositions shown in table 2 as candidates. The remaining compositions were eliminated because of safety or processing issues, autoignition temperatures exceeding 500°C (ref 4), or other considerations such as cost. Since the first fire compositions are in contact with the flash from expelling charges for short duration's, they must reach their autoignition temperatures quickly. This is more easily accomplished if the autoignition temperature is relatively low. The remaining compositions, which were chosen as candidates, were Starter Mix XXV, IM-6, and I-548 (no. 10, 34, and 40, respectively in table 2). Table 3 shows further detail on these compositions.

Static Tests of Candidate Compositions

Composition I-548 was dropped from consideration because the required grade of calcium resonate could not be obtained easily. Only starter Mix XXV and IM-6 were evaluated statically. Table 4 is a matrix of assembly types and quantities statically tested. Assemblies with the standard first fire compositions served as controls. The choice of assemblies was based upon the items planned for the qualification tests. In turn, the choice of items was based upon what items would be in production during the duration of the program.

The required parts for the assemblies were ordered and tooling was fabricated for loading the assemblies. The Pyro Systems Branch of the U.S. Army Armament Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, New Jersey mixed all the pyrotechnic compositions and loaded all the assemblies used in the static tests. The Branch also conducted all the static tests in its own flare tunnel. Table 5 is a roll up of averaged static test parameters for the assembly/first fire combinations tested.

The efficiency data shows that SM-XXV offers significantly better performance over IM-6 for the M125A1 and M127A1, while the IM-6 is much better for the M158. They are nearly equal for the M583A1. SM-XXV was better than the standard first fire for all items except the M583A1. Here, the standard was approximately 13% higher. Based on this static data, as well as SM-XXV's lower cost, we decided to test SM-XXV in the ballistic testing.

Ballistic Testing for Prove Out of New First Fire Composition

In consultation with ARDEC's Product Assurance and Test Directorate, a test plan was drafted for ballistic testing. The ballistic test consisted of functioning tests at conditioning temperatures specified in the military specifications. Additionally, some illuminant assemblies from the lot used for the ballistic test were statically tested. Quantities were per first article requirements. This minimal amount of testing was justified since changing the first fire would in no way affect the hardware and other energetic material fills in the item.

The ballistic tests were conducted by Thiokol Corporation at Longhorn Army Ammunition Plant (LHAAP). During the time period in which static testing at ARDEC concluded and ballistic tests begun, numerous production lines were closed at LHAAP. Startup of these lines exclusively for this program would have been prohibitively expensive. Consequently, only the M127A1 signal experienced ballistic testing.

Thiokol loaded the items per the technical data package requirements and performed testing per the Scope of Work. Table 6 shows their static burn data. The candlepowers measured at LHAAP were higher than ours; this was due to differences in the tunnels and test procedures. As expected, the candlepower achieved with SM-XXV was higher then FF-I. Since exact illuminant weight data was unavailable, efficiencies are not reported. Table 7 presents the ballistic (flight) data. The data shows that aside from two failures at 70°F, all signals met the requirements. One failure was non-expulsion of the signal; the other, failure of the round to expel. Neither was related to first fire function. The only ballistic parameter that could have been possibly affected by the change in first fire was the burn time. The differences between the signals with FF-I and SM-XXV for this parameter were small and within the standard deviations at all temperatures.

CONCLUSIONS

The success of the project vindicated the selected approach. Choosing a presently used igniter composition kept the cost and technical risks of the program as low as expected. The need for extensive testing above first article requirements was eliminated.

RECOMMENDATIONS

Other items incorporating igniter compositions with sole source, toxic, or environmental/objectionable constituents should be evaluated for igniter replacement. Programs to achieve this objective would be of minimal scope since they would have the data base of igniters generated in this program as a starting point.

Table 1
Formulations for pyrotechnic first fire compositions

		. Nom	inal weight pe	rcent
Constituent	Requirements	Type I	Type II	Type III
Barium nitrate	MIL-B-162 Average particle size \leq 20 μ	50 -		50
Strontium nitrate	MIL-S-20322 Grade A or B		50	
Tetranitrocarbazole	MIL-T-13723	10	10	10
Silicon	MIL-S-230 Average particle size \leq 10 μ	20	16	13
Zirconium hydride	Commercial	15	15	20
Polyvinyl chloride	MIL-P-20307		5	3
Laminac 4116 + 1% Lupersol DDM catalyst	Commercial	5	4	4
Color requirement		Yellow	Red	Green

Table 2 Database for first fire and pyrotechnic compositions

Table 2 Database for first fire and pyrotechnic compositions

No Fuel					•					4			
	Oxidant	Additive	Binder	Solvent Ty	Type Cr	Cost E.Sta.(j)	.(J) Fric.P	o Impact	BR	Hear	19.Temp	COMPAC	10×101ty
(Percent)	(Percent):	(Percent):	(Percent):	(Percent) of Comp		#/Lb Uncon/Con	Con Steel/F	/F PA,(")	As Shown	ofRec Cal/g	Degrees C Auto/DTA	Gr/Haz (DOD)	
1 Lead Azide				ũ	Exp	0.007	Exp/Exp	kp 4 -5	1		1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 Nitrocellulose			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G I	Exp	0,049	!	3 - 2		1	160	0 /1.1	Not Toxic
3 PETN				H H	Exp	.06 /.21	.21 Cra./NR	. 9 E		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7:-	
4 TNT			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	Exp	.06 /4.4		14		1060	70475		1
3 RDX			1	М	Exp	>11.03	3 Exp/NR	8		1240	260 (59)	11.1	1
6 Black Powder				<u>i</u>	Exp 3	12.	וטו ו	R 16	1 1 1	684	288 (5s)	71.1	
7 98.5-99 RDX		(1.5 St.Acid		<u> </u>	Exp.	=	0	NR 8 -12			190	71.1	1
8 30 Charcoal	70 KND3			6	St.MIXII 3	3.24 0.75 BM	BM NR/NR	NN 016	9 1.95/mg	8 1	418	6 /1.3	MOD.
9 83.3 Dry Mix			16.7 B.Solu	i ()	StartMix 2	2.35 1.25	NR/NR	15 806	E 0.3%/mg		401	6 /1.3	МОР
26/4/13;S1/C/Al BinderSolu(#9):	35/22;KNO3/Fe203		6 NC	94Ace tone						1		0 /1.1	Slight
26/13/41S1/A1/C				UMP.	NAME OF THE PERSON OF THE PERS	2.71 1.5 8	BY NR/NR	15 80E	E 5.0s/in	1186	421	71.3	SLIGHT
i			40 B.Solu.	. O	St.MIXUI 0	0.46 1.15	NR/NR	28 BM	>1 s/mg	_	182	6 /1.1	SLIGHT
Dry Mix (#11); 16.8/10;S/C.Starc BinderSolu(#11);	Dry Mix (#11): 16.8/10;S/C.Starch 43.2/30;KC103/NaHC03 BinderSolu(#11):	_	4 NC	96Ace tone	00		NR/NR	3.2806	E 25 s/ln	946	216	-	
12 35 pts Sb	35/30pts;CaSi 2/KC104		66pts(8 NC	92 Ace.)			NR/NR	15 806	E 13s/in	1812	446	/1.3	1
13 40 A1	30/30 jBa(NO3) 2/KC104				PFP-555			26		2147	700 (58)	! ! ! !	1
	62 Ba(N03)2		111111111111111111111111111111111111111		Flash	Ë	a.25 , Cr/	22 ERL			-	D /1.1	SL-MOD.
15 91 BK. Powder	9 A1		1		Flash	3.09 0.225	E E	14	0.2s/mg	•	344		MOD.
	40 KC104			1	1	7.53 3.274	.73	1 (2)	٠,0		762	.0 /1.1	T0X
	25.5/28.1;BaCr04/KCl		8.1Vi ton A	B.Acetate F	FF	22.4 0.0125	25 CD/CD	9			380	A /1.1	TOXIC CAR, SUS
18 50/50; FF/Flare FF: 10 B Flare: 65 Mg	90 BaCr04 28 Teflon		7 Hycar	MEK or	FF.Flare E	8.89 0.051 10.1 0.0034 7.60	28/CB 34 CB/CB	15 15 16	0.6s/in	480	550 615 400	6 /1.3	MOD CAR.SUS. SL MOD
19 DryMix & B.Solu, Dry Mix (#16): 25/25; T1/Si Binder Solu:	25/25; Fe304/Pb304			l 1	FF.VII	0.875 1.31 0.77	NRZNR	15 80	3.0s/in	360	762	6 /1.3	MOD
20 30 W	55/10;Bacr04/KC104	5 D.earth	Vi ton A		FFMIX	! ! !	NR/NR		! ! !		391	/1.3	
	50 Pb304	(Graphite	NC	Acetone) F	FF.M: XX	1.29 1.625		!	5 0.3s/mg	9 275	780	6 /1.1	MOD
	90 Pb02	1	1	E.Acetate F	FF.PComp	7,90 0,0125	25 CB/CB	3 2			327	A /1.1	MOD

Table 2 (cont)

(cont)

Table 2 Database for first fire and pyrotechnic compositions

:			. 	·	: :										
Z	No Fuel	Oxidant	Additive	Binder	Solvent) adxl.	Cost E.St	E.Sta.(J) Fr	Fric.P Ir	Impact B	BR	Heat I	Ig.Temp	Compat	Toxicity
1	(Percent):	(Percent):	(Percent)	(Percent)	Percent)	of Comp. 4	\$/Lb Unco	Uncon/Con Ste (BM)	Steel/F Pr	¥ (°), S	**As Shown C	ofRec Cal/g A	Degrees C Auto/DTA	Gr/Haz (DOD)	******
N	23 33 Bk Powder Red Pyro Comp.: 2/17; Mg,Granli Mg,Gran 4	67 Red Pyro. Comp. 13/21.4;NaNO3/KC1041	6.5 Hexachl'b. 7.5 Gilsonite 2.8 Graphite		1	FF + M1 31 S	1		ļ		. !	; ; ;	3 8 8 8	b /1.1	MOD CAR.SUS
1 00		ļ				FF30M1xU	1.09 N/R	6	Cr/NR 1	10 BOE 6	6.5s/ln	9	659	6 /1.3	SLIGHT
# N	25 FF: 1,11 & 111,	TNC Pyro.Comp.1						! ! !				7 089	476	7:1	МОР
İ		50 Ba(NO3)2 50 Sr(NO3)2 50 Ba(NO3)2	5PvC1 3PvC1	5 Lam.4116 4 Lam.4116 4 Lam.4116			3.78	i 11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14		00 ×	8.65/in 12 s/in 12 s/in	11 11 11 12 12	11 11 13 14 15 17 17 17 17	19 19 19 11 11	CAR.SUS
1 (4	TNC, FFIII			Cel, Nitrate							1			\$ 	
1 (4)	27 TNC, FFI(Slurry)		2	Cel. Ni trate		FF127A1					1			; ; ;	; ; ;
1 (4	28 TNC, FFII(Slurry) or 16 BPowder,CI-8	84 TNC FFII (S)urry)	Pluronic F68 Pluronic F68	Cel.Nitrate	MEK	FF158A1 FFM158A1			 	! ! !	1 1 1 1 1				, !
. (4	TNC, FF or 19 E	Slurry) 39 Ignition 18/58;Ty IV	۱ ﴿	S P. sater		FFM583A1 FFM583A1	3.78 11.4 14.2	1	8 9 1	11 11 11 11	5 11 11 11	1		######################################	H D R D D D D D D
H (T)	N	80 Pb304		1.8 C10 NC	90 Ace.)		0.82	S.		>1580E 4			371	71.3	TOXIC
יחי		90 Pb304	1 	1.8 CLO NC	90 Ace.)	FFMIX	0,65	Z Z	NR/NR		1.5s/in	256	1	/1.3	TOXIC
וחי		75 KN03 being produced. An	old quotation	1 VAAR 3 \$19.00 /	lb. was	۱ د	19.3 0.124 cost		SB/NR 1	10	<u>-</u>	4	414/431.2	7.1	MOD.
(0		20/30; Pb02/Cu0		1 1 1 1 1 1 1 1	! ! ! !	Ign'i ter	79.1			ın.			476		T0X1C
ı m	6	54 KN03		6 Viton A	1 1 1 1 1 1 1 1 1	1M-6	3.82 > 1	\ 	> 2477 > ft. 1bg	49.6 1	11.6in/		673.5	9	MOD
ım	1 6	25 Fe203	10 D.Earth	VAMR added	1 1 1 1 1 1 1	I-A1A	>69 0.0024			24	6	550	427	6/1.3	Slight
ιm	2	79 BaCr04				0P-162	25.6 0.0013			23	c 1	376	418	7:1	CAR, SUS
ım	161	58/18; KNO3/TFE		5 Lam4116		51-282			Spk/NR 9			1	NR(Ssec)	1.1	MOD.
i (f)	38 23.1 B	70.7 KN03	0.5PluronicF68	5.7 Lam4116	! ! ! ! ! !	1gniter	1.0BM	-	-	m		0091	400/565	- 1	MOD
וח		80.5 BaD2	2/1;CaRes/Gra- phite	5 5 5 7 1 1 1 1 1 1 1		1-527	1.95 1.25		Sps/NR 2	23			375	6 /1.3	CAR.SUS
14 1	40 15.0 TY-III Mg(Gran	45.0 Sr02	7/13; Tyl/Tyll Ca Resinate			1-548	0.05	Σ.	Spks/NR 8		! !		239	1 1 1	MOD
4	41 6 Mg (Gr.12) I-136: 10 Ca Res.	0.0				1-194	5.97 0.25			35ERL 16	,5e/mg		287	6 /1.1	Slight Slight
1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1	I 1 1 1 1		 							

Table 2 (cont)

Table 2 Database for first fire and pyrotechnic compositions

5 B 10 B 10 B 15 B 14 B 13 B 50 W 20 W 20 W 270/30 ZnNi alloy 23/70/30 ZnNi alloy 423/30/70ZnNi alloy 55 MN				,	- y be	Cost	E.Sta.(.)	ייו כו	HOACT	6		20.7		22.40
10 B 10 B 19 B 15 B 14 B 50 W 20 W	(Percent);	(Percent):	(Percent)	(Percent)	of Comp.	#7.Lb Un		Steel/F	PA, (1)	**As	ofRec Cal/o	Degrees C Auto/DTA		******
10 B 15 B 15 B 14 B 50 W 20 W 20 W 270/302/NU alloy 275/30 ZNU alloy 25 MN 55 MN	95 Bacr04				0P.T-10	7.15		CB/NR	>40	1.9s/in	265	553/675	71.1	CAR. SUS
15 B 19 B 15 B 14 B 50 W 20 W 20 W 20 W 27 30/702nNi alloy 27 30/702nNi alloy 28 33/702nNi alloy 25 MN	90 BaCr04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: : : : :	1 1	10.1 0.02	!	CB/CB	12	0.7s/in	480	615/705	7.1	CAR.SUS
15 B 14 B 13 B 50 W 20 W 2	90 BaCr04		1 VAAR (See record	#32)	3P-879	9.70 0.25		CB/NR	24	1.5s/in	463	560	7:1	CAR. SUS
19 B 14 B 50 W 20 W 70/302nN1 a110y 817 30/702nN1 a110y 823 30/702nN1 a110y 55 MN	85 BaCr04				DP-523	13.2		CB/NR	26	1.5s/in	502	7645	7.1	CAR, SUS
15 8 13 8 50 W 20 W 2	81 BaCr04	! ! ! ! ! ! !			DP.T-10	15.7 0.50	1	CB/NR	10	2.0s/in	276	656	7.1	CAR. SUS
13 B 50 W 20 W 7 70/302nNI alloy 817 30/702nNI alloy 823 30/702nNI alloy 55 MN	44/41; Bacr04/Cr203	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			De LayMix	13.9			1	4.5s/in		! ! ! ! ! !	1 	CAR. SUS
20 W 20 W 20 W 20 W 70/302nN1 a1107 617 30/702nN1 a1107 623 30/702nN1 a1109 55 MN	44/42; BaCr02/Cr203				De LayMIX	13.2				6.5s/In			 	CAR, SUS
20 W 20 W 20 W 20 W 20 W 217 30.702nNI alloy 23 30.702nNI alloy 55 MN	41/44; BaCr02/Cr203				DelayMix	12.5		1	1	8.5s/in	1 1 1			CAR. SUS
20 W 9 70/302nNI alloy 617 30/702nNI alloy 623 30/702nNI alloy 55 MN	40/10; BaCr04/KC104				DelayMix	7.27	1	NR/NR	22 BOE	12s/in	233	270	/1.3	Car.SUS
9 70/302nNi alloy 617 30/702nNi alloy 3 70/30 2nNi alloy 623 30/702nNi alloy 55 MN	70/10; BaCr04/KC104			! ! ! ! !	DelayMix	5.68		: : : : :	1	41s/in	[! !	 - - - - - - -	! ! ! !	CAR. SUS
3-70/30 ZnNi alloy 423-30/70ZnNi alloy 55 MN	60/14; Bacr04/KC104			1 6 8 9 1 1 1	DP-1415, Tyll	17.9		CB/NR	740	6.0s/ln	521	325	/1.3	CAR, CUS TOXIC
55 MN	60/14; BaCr04/KC104			# # # # # # # # # # # # # # # # # # #	DP-1415, Tylll	16.6	 	CB/	>40	11s/in	521	325	/1.3	CAR, SUS TOXIC
:	45 PbCr04	1 1 1 1 1 1 1 1 1 1 1 1			DF.016	1.07			1	2.2s/ln	230		1	CAR, SUS
55 33 Mn 30/37	30/37; BaCr04/PbCr04				DP.016B	1.99		NR/NR	15 BOE	8.48/In	256	460		CAR. SUS
56 32.8 Mn 37/30	37/30.2;BaCr04/PbCr0) ! ! ! ! !	DP. D1 6C			NR/NR	15 BOE	135/in	262	 	/1.3	CAR, SUS
57 28 2r 72 Pb02	Pb02			 	DelayMix	22.5		1 	† ! !	<.5s/in	: :			Toxic
58 5/31 j 2r / Ni 42/22 j	42/22; BaCr04/KC104				DP.T-2	10.5	1 1 1 1 1	1 2 1 1 1	t 1 1 1	6.5s/in	 	1 		CAR, SUS
59 5/17;2r/Ni 70/8;	70/8; BaCr04/KC104			1	DF.HP-25	9.71			!	18 s/in		1 		CAR. SUS
32~58 W	32-56 BaCr04 & 10-14 KC104		VAAR	#32)	Delay P.		11.03) N	38			270		МОР
61 53 Zr 21/26	21/26j KC104/Mc03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* ****		81-98	1		1			1174	372		
48.7 Zr	31.3/20; Mod3/Cr203				51-113	54.1 0.0	0.00018	CB/CB	34	0.8s/in	605	400	6/1.3	Low
63 40 Zn;20 Ai 20 KC	20 KC104;20 KN03				PFP-600	. ^			14		 	200	6 /1.3	МОР
64 60-67 Al 33-40	33-40 KC104				PFP-600	5.9 0.37		CB/NR	24		2284		0 /1.1	
65 22.5/10; A1(F1.)/S 64/3.	64/3.5; KC104/SbS2				M-80									

<

Table 2 (cont)

Table 2 Database for first fire and pyrotechnic compositions

*	1		.*	યો		٠						W. Ant
Fice 1	0x i dan t	Additive	Binder	lvent		Cost E.Sta.	E.Sta, (j) Fric.P	Impact	Heat		Comp a t	Toxicity
(Percent):	(Percent):	(Percent);	(Percent):	(Percent)	of Comp.	#/Lb Uncon/C	Uncon/Con Steel/F (BM)	PA,(") **As Shown	Of Rec	offec Degrees C Cal/g Auto/DTA	Gr/Haz (000)	******
1	60 BaCr04				;				502	1	! ! ! !	. I
			1	1	Propel't	11.03	NR/NR	46		1	0 /1.1	
Ě			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	Propel't	5.2	Snp/NR	2 -3		1	C /1.1	
	111111111111111111111111111111111111111		!		Propel't	>12.5	NR/NR	4			· 🔪 1	
	44 Sr (N03)2	7 Declarane	7 VAAR (See record	#32)	111,87	>50	Cra/NR			344	D /1.1 High	46
71 48-65 20/50 Mg	31-47.5 NaNO3		4-4.5 VAAR (See record	#32)	FY-1450	=	NR/NR	21	1	/518	D /1.1 MOD	٥
122	10 Teflon		15 Viton A	Acetone	2	9.00 11.025	NR/NR	13		400	A /1.3 SI	S1 MOD.
_	38 NaNO3		5 Lam4116	Acetone		4.28 11.025	NR/NR	13	. 1	640		SL-MOD
	34 NaN03 45 NaN03 28 TFE	1 1 1 1 1 1 1 1 1	9 Lam4116		FY-1192 FY-1451 111.F.IR	:	NR/NR NR/NR	20 1.6	1	610 431 400	6.71.3	SL-Moo
77 Opt. Fuel: 73 Mg 30/50 of: 8.Ty-1(8p.14047) or b.Ty-11(8p.3820) or c.Ty-10,El.\$p.14067	46 Ba(NG3)2, C1-2 (30um)	16 PvC1	5 Lam4116		111,M125	11.02					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Opt. Composition: 66 Mg30/50TyI(14067 65 Mg30/50TyI(14067			5 Lam4116 4 VAAR		111.M127	11.02				1 1 1 1 1	,	! ! ! !
,	18	15 PvC1	4 VAAR		111.M158	11.02						1 1 1 1 1 1 1 1
80 28 M930/50Tyl 14067 & 20 M950/100El 14067	41 NaNO3,GrB,C1-2		•		111,583	11.02				- 11 - 11 - 11 11 11 11 11 11	11 11 12 13 11 11 11 11	## ## ## ## ##
				;								
			The thermal and sensitual rechnications of the rechnication of the control of the	20 88 8 8 8 8 8	A Report, A Report, A Report, L. Helnt, Developm Jon 11:00 0 A Analysi by 9 Gord	Noted from Highs **Abn-equal-qual-qual-qual-qual-qual-qual-qual-	•				·	
	·		In order to expect sources were used units. Some of the statements which promotes the proposition. The represend composition to common practice is 20,000 and 40,000 p.	the coll that presents there rates were terminder of the terminder of the terminder of the terminder of the	to the data in the data data data data data data data dat	burning rate data, in two different of from HGBOS for 20 mg of lone were collected for weened /inch. The sures Deluere		·				

The toutelly and compatibility data were collected from 1629 statements and from a Moyer webleation!Handbook.cl...
Toxic and Hear-down furnicati, 1981.
Cost data was collected from the latest sellions of the month! Changes! Harfelling Beoglig, published by the Schnellinfor Coopany of New York and by diete contact with users and Handwattering Coopanies.

contact in the propositions and explosives were used for consertion.

9

Table 2 (cont)

Abbreviations

E. Sta. = Electrostatic Pyro = Pyrotechnic J = Joules Hexachl'b = Hexachlorobenzene Fric. P = Friction TNC = tetranitrocarbazole BR = Burning rate **PvCI** = Polyvinyl chloride = Ignition temperature lg. Temp LAM = Laminac Compat = Compatibility Cel = Cellulose Comp = Composition Pwd. = Powder Uncon = Unconfined Ту = Type Con = Confined Tef = Teflon F = Fiber = Polyester P.ester PA = Picatinny Arsenal CaRes = Calcium resinate = Recation Rec Sps, Spks, Spk = Sparks DTA = Differential thermal analysis Pb = Partial burn Gr = Group Propel't = Propellant Haz = Hazard TFE = tetraflouroethylene BM = Bureau of Mines CI = Class Exp = Explodes Sp = Specification Cra, Cr = Crackles ΕI = Ellipsoidal NR = No reaction Opt = Optimal St. = Stearic Snp, Snps = Snaps St. = Starter

BOE = Bureau of Explosives

= Moderate

= Binder

Solu = Solution Nc = Nitrocellulose

pts = parts
Ace = Acetone
Tox = Toxic

Mod

В

SI-Mod = Slight to moderate

ERL = Energetics Research Laboratory

Bk. = Black

B.Acetate = Butyl Acetate

CD = Complete detonation
CAR. SUS = Carcinogen suspect
MEK = Methyl Ethyl Ketone
CB = Complete burning
D.earth = Diatomaceous Earth

E. Acetate = Ethyl acetate

Table 3
Candidate first fire compositions

		<u> </u>	al weight pe	ercent
Constituent	Requirements	<u>SM-XXV</u>	<u>IM-6</u>	<u>l-548</u>
Silicon	MIL-S-230 Grade II, Class C	25.7 ⁻	40.0	
Potassium nitrate	MIL-P-156 Class I	34.6	54.0	
Charcoal	JAN-C-178 Class D	4.0	00 00 da	
Aluminum powder	MIL-A-512 Type II, Grade C, Class 4	12.8		
Red iron oxide	MIL-I-275 Grade D	21.7		
Nitrocellulose	MIL-N-244 Grade D	1.2	and the same	
Viton A	Commerical		6.0	
Strontium peroxide	MIL-S-612 Grade B	~~		65.0
Calcium resinate	MIL-C-20470 Type II	. 	****	7.0
Calcium resinate	MIL-C-20470 Type I			13.0
Magnesium powder	MIL-M-382 Type III, Granulation 12			15.0

Table 4
Static tunnel (ARDEC) data for various illuminant assemblies

Average Color Value	0.42 ± 0.02	0.41 ± 0.01	0.41 ± 0.00	0.54±0.01	0.54 ± 0.01	0.53±0.00	0.05+0.00	0.04 ± 0.00	0.05±0.00	N. A.	N. A.	N. A.
Average Efficiency	2347±430	1924 <u>+</u> 471	2677±282	6811 <u>+</u> 1257	8511 <u>+</u> 1533	7717±717	34302±2084	26275±8204	36784±2806	36827±3874	32251±3358	32369±2655
Average <u>Candlepower</u>	5516±1040	4196±1165	5962 <u>+</u> 991	19349±3696	21177±2897	20323±1193	76788±4367	56962±1734	80780±5359	110631±4513	112867±16744	106327±11498
Burn Time, sec	5.1 ± 0.3	5.6±0.5	5.4+0.5	4.2±0.4	4.8+0.4	4.6±0.5	37.9±1.5	39.0±1.2	38.6±0.8	26.0±2.9	21.0±4.6	23.2±2.4
# Assemblies	10	10	10	10	10	10	10	10	10	10	10	10
First Fire	FF-III	IM-6	SM-XXV	FF-II	9-WI	SM-XXV	FF-I	9-MI	SM-XXV	FF-I	1M-6	SM-XXV
Assembly for	M125A1 Green Star	Cluster Ground	Illumination Signal	M158 Red Star	Cluster Ground	Illumination Signal	M127A1 White Star	Parachute Ground	Illumination Signal	M583A1 White Star	40mm Parachute	Cartridge

Table 5
Static tunnel (LHAAP) data for standard and candidate illuminant assemblies

Assembly	First fire	No. assemblies	Average burn time, sec	Average candlepower
M127A1	FF-I	20	34.0 ± 0.8	114,100 ± 5,890
M127A1	SM-XXV	20	31.0 ± 0.9	135,100 ± 9,010

Table 6 Ballistic data for signals conditioned at -65°F

	·	M127 with FF-I	M127 with SM-XXV	Requirements
	# Fired	16	16	16
	# Functioned	16	16	16
	Average	715 <u>+</u> 38	700 <u>+</u> 76	None
Altitude, feet	Maximum	805	784	None
	Minimum	652	433	None
	Average	6.0 <u>+</u> 3.2	11.0±9.1	<u><25</u>
Angle, degrees	Maximum	14	44	None
	Minimum	2	3	None
	Average	0.82 ± 0.08	0.82±0.15	None
Chute Delay, seconds	Maximum	0.92	1.29	5
	Minimum	0.66	0.63	None
	Average	37.0 <u>+</u> 1.3	37.0±1.2	None
Burn Time, seconds	Maximum	39.1	38.7	None
	Minimum	34.1	35.1	25

Table 7
Ballistic data for signals conditioned at 70°F

		M127 with FF-I	M127 with SM-XXV	Requirements
	# Fired	32	32	32
	# Functioned	32	30	32
	Average	815 <u>+</u> 34	821 <u>+</u> 42	>725
Altitude, feet	Maximum	688	916	None
	Minimum	719	743	500
	Average	4.0 <u>+</u> 2.4	4.0 <u>+</u> 2.4	<u><12</u>
Angle, degrees	Maximum	10	6	30
	Minimum	-	1	None
	Average	0.72±0.06	0.74±0.09	None
Chute Delay, seconds	Maximum	0.91	0.95	S
	Minimum	0.64	0.59	None
	Average	32.9±1.2	32.5±0.8	None
Burn Time, seconds	Maximum	34.7	34.9	None
	Minimum	30.6	30.5	25

Table 8 Ballistic data for signals conditioned at 165°F

		M127 with FF-I	M127 with SM-XXV	Requirements
	# Fired	32	32	32
•	# Functioned	32	32	32
	Average	828±34	845 <u>+</u> 25	None
Altitude, feet	Maximum	988	916	None
	Minimum	684	803	None
	Average	4.0 <u>+</u> 2.5	4.0 <u>+</u> 2.4	None
Angle, degrees	Maximum	10	∞	None
	Minimum	1	0	None
	Average	0.67±0.08	0.69±0.10	None
Chute Delay, seconds	Maximum	0.83	1.06	None
	Minimum	0.53	0.56	None
	Average	31.2 <u>+</u> 1.3	30.6±1.3	None
Burn Time, seconds	Maximum	35.1	33.8	None
	Minimum	28.8	28.4	None

REFERENCES

- 1. Ellern, H., <u>Military and Civilian Pyrotechnics</u>, Chemical Publishing Company, New York, NY, 1968.
- 2. Livingston, S., "Development of Improved Ignition Type Powders", Technical Report PATR 2267, Picatinny Arsenal, Dover, NJ, 1956.
- 3. McIntyre, Fred L., "A Compilation of Hazard and Test Data for Pyrotechnic Compositions," Contractor Report ARLCD-CR-80047, ARDC, Picatinny Arsenal, Dover, NJ, 1980.
- 4. Conklin, J. A., Marcel Dekker Inc., New York, NY, 1985.
- 5. Knapp, Charles, "Development of Igniter Propellant", Unpublished Laboratory Report.
- 6. Gordon, S. and Crane, E. D., "Compilation and Evaluation of Ignition Temperature Parameters and Differential Thermal Analyses for Pyrotechnic Barioum Chromate-Boron Systems," Unpublished Laboratory Report.
- 7. Sittig, Marshall, <u>Handbook of Toxic and Hazardous Chemicals</u>, Noyes Publications, Park Ridge, NJ, 1981
- 9. Chemical Marketing Reporter, Schrell Publishing, New York, NY, May 91.
- Knapp, Charles, et. al., "Development of Igniter Compositions for High Altitude Ignition of Illuminants, Propellants, etc.." Report PL-C-TN9, Picatinny Arsenal, Dover, NJ, 1958.

DISTRIBUTION LIST

Commander

Armament Research, Development and Engineering Center

U.S. Army Tank-automotive and Armaments Command

ATTN: AMSTA-AR-WEL-T (2)

AMSTA-AR-GCL AMSTA-AR-WE (3) AMSTA-AR-WEE (5)

AMSTA-AR-WEE-F, R. N. Broad

G. Chen

T. Carney

Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)

ATTN: Accessions Division (12) 8725 John J. Kingman Road, Ste 0944 Fort Belvoir, VA 22060-6218

Director

U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-EI

392 Hopkins Road

Aberdeen Proving Ground, MD 21005-5071

Commander

Chemical/Biological Defense Agency

U.S. Army Armament, Munitions and Chemical Command

ATTN: AMSCB-CII, Library

Aberdeen Proving Ground, MD 21010-5423

Director

U.S. Army Edgewood Research, Development and Engineering Center

ATTN: SCBRD-RTB (Aerodynamics Technology Team)

Aberdeen Proving Ground, MD 21010-5423

Director

U.S. Army Research Laboratory

ATTN: AMSRL-OP-CI-B, Technical Library Aberdeen Proving Ground, MD 21005-5066

Chief

Benet Weapons Laboratory, CCAC

Armament Research, Development and Engineering Center

U.S. Army Tank-automotive and Armaments Command

ATTN: AMSTA-AR-CCB-TL Watervliet, NY 12189-5000

Director U.S. Army TRADOC Analysis Command-WSMR ATTN: ATRC-WSS-R

White Sands Missile Range, NM 88002

Commander Naval Air Warfare Center Weapons Division 1 Administration Circle

ATTN: Code 473C1D, Carolyn Dettling (2) China Lake, CA 93555-6001

GIDEP Operations Center P.O. Box 8000 Corona, CA 91718-8000

Commander

Armament Research, Development and Engineering Center

ATTN: AMSTA-AR-ESM Rock Island, II 61299-5000

Commander

Crane Army Ammunition Activity ATTN: SIOCN-EDS, S. Armstrong Crane, IN 47522-5099

Commander

Naval Surface Warfare Center Crane Division ATTN: CODE 407, W. Hubble

Crane, IN 47522-5001